Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 16983, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451882

RESUMO

Cell-free DNA (cf-DNA) concentration in human plasma is often increased after burn and trauma injuries. Two major sources of cf-DNA are the parenchymal cells damaged by the injury and various circulating cells indirectly altered by the response to injury. The cf-DNA originating from neutrophils, also known as circulating neutrophil extracellular traps (cNETs), is of notable interest because cNETs have been associated with pathological processes in other conditions, including cancer, autoimmunity, etc. Both intact chromatin and oligonucleotides, which are the by-product of cf-DNA degradation, are assumed to contribute to the cf-DNA in patients. However, traditional assays for cf-DNA quantification do not distinguish between cNETs and cf-DNA of other origins and do not differentiate between intact chromatin and oligonucleotides. Here we measure the amount of intact cNETs in the circulation, using a microfluidic device that mechanically traps chromatin fibers directly from blood and an immunofluorescence protocol that detects neutrophil-specific proteins associated with chromatin. In a rat model of burn injury, we determined that the chromatin fibers in the circulation after injury originate exclusively from neutrophils and are cNETs. We found that the concentration of cNETs surges the first day after injury and then decreases slowly over several days. In a secondary sepsis model, which involved a burn injury followed by cecal-ligation-puncture, we measured additional increases in cNETs in the days after sepsis was induced. These results validate a microfluidic assay for the quantification of cNETs and will facilitate fruther studies probing the contribution of cNETs to complications after burns and sepsis.


Assuntos
Queimaduras/sangue , Armadilhas Extracelulares , Microfluídica/métodos , Sepse/sangue , Animais , Elastase de Leucócito/sangue , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
2.
Sci Rep ; 8(1): 10036, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968756

RESUMO

We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass. However, cooperative interactions of proteins with the DNA can lead to directed motion of DNA molecules inside the nanochannel. Here we show directed motion in this configuration for three different proteins (T4 DNA ligase, MutS, E. coli DNA ligase) in the presence of their energetic co-factors (ATP, NAD+).


Assuntos
DNA Ligases/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Ligases/fisiologia , Proteínas de Ligação a DNA/genética , Difusão , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Movimento (Física) , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , NAD/metabolismo
3.
Lab Chip ; 18(11): 1514-1520, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29770423

RESUMO

Neutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.e. living colloids). The patterned microbes in the living colloid are mechanically trapped inside the wells and fully accessible to neutrophils. Using the assay, we studied the interactions between human neutrophils and Candida albicans and Staphylococcus aureus, two common human pathogens. We also probed the susceptibility of C. albicans colloids to caspofungin, a common antifungal drug.


Assuntos
Coloides/química , Ensaios de Triagem em Larga Escala/instrumentação , Interações Hospedeiro-Patógeno/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Neutrófilos/microbiologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Células Cultivadas , Humanos , Testes de Sensibilidade Microbiana
4.
Adv Biosyst ; 2(10)2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31223642

RESUMO

Neutrophils are the most abundant white blood cells in the circulation and serve antimicrobial functions. One of their antimicrobial mechanisms involves the release of neutrophil extracellular traps (NETs), long chromatin fibers decorated with antimicrobial granular proteins that contribute to the elimination of pathogens. However, the release of NETs has also been associated with disease processes. While recent research has focused on biochemical reactions catalyzed by NETs, significantly less is known about the mechanical effect of NETs in circulation. Here, microfluidic devices and biophysical models are employed to study the consequences of the interactions between NETs trapped in channels and red blood cells (RBCs) flowing in blood over the NETs. It has been found that the RBCs can be deformed and ruptured after interactions with NETs, generating RBC fragments. Significant increases in the number of RBC fragments have also been found in the circulation of patients with conditions in which NETs have been demonstrated to be present in circulation, including sepsis and kidney transplant. Further studies will probe the potential utility of RBC fragments in the diagnostic, monitoring, and treatment of diseases associated with the presence of NETs in circulation.

5.
Nano Lett ; 15(8): 5641-6, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26156085

RESUMO

We present a nanofluidic device for targeted manipulations in the quarternary structure of single DNA molecules. We demonstrate the folding and unfolding of hairpin-shaped regions, similar to chromatin loops. These loops are stable for minutes at nanochannel junctions. We demonstrate continuous scanning of two DNA segments that occupy a common nanovolume. We present a model governing the stability of loop folds and discuss how the system achieves specific DNA configurations without operator intervention.


Assuntos
DNA/química , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência , Nanotecnologia/instrumentação , Conformação de Ácido Nucleico
6.
Mikrochim Acta ; 182(7): 1561-1565, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27134313

RESUMO

Intercalating fluorescent probes are widely used to visualize DNA in studies on DNA-protein interactions. Some require the presence of adenosine triphosphate (ATP). We have investigated the mechanical properties of DNA stained with the fluorescent intercalating dyes YOYO-1 and YOYO-3 as a function of ATP concentrations (up to 2 mM) by stretching single molecules in nanofluidic channels with a channel cross-section as small as roughly 100×100 nm2. The presence of ATP reduces the length of the DNA by up to 11 %. On the other hand, negligible effects are found if DNA is visualized with the minor groove-binding probe 4',6-diamidino-2-phenylindole. The apparent drop in extension under nanoconfinement is attributed to an interaction of the dye and ATP, and the resulting expulsion of YOYO-1 from the double helix.

7.
Biomicrofluidics ; 8(3): 034113, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25379073

RESUMO

We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNApolymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...